TRS-80 Edition

(OMPUTERS FOR KiDS

Sally Greenwood Larsen

COMPUTERS
FOR KIDS

TRS~80 EDITION

COMPUTERS
FOR KIDS

TRS~80 EDITION
SALLY GREENWOOD LARSEN

creative compatinrg
press

Copyright © 1980 by Creative Computing Press.

All rights reserved. No portion of this book may be reproduced — mechanically, electronically,
or by any other means, including photocopying— without written permission of the publisher.

Library of Congress Number: 80-68962
ISBN: 0-916688-20-8

Printed in the United States of America.
10 9 8 7 6 5 4 3
Creative Computing Press

39 E. Hanover Avenue
Morris Plains, New Jersey 07950

To Dr. Donald Piele,
for all his help and support.

To Linda King,
for believing in me.

TABLE OF CONTENTS

SECTION
1. What Is a Computer? 1
2. Flowcharting 4
3. Running the Machine Itself........... 9
4. Getting Ready to Program 12
5. Print and Variables 17
6. GOTO, INPUT, and RND 27
7. IF-THEN and FOR-NEXT 30
8. Graphics Programs 35
9. Sample Programs 41
10. Glossary of Statements
and Commands 43

SECTION 1: WHAT IS A COMPUTER?

When cavemen and women had work to do, they had no machines or
tools to help them. They had to do it all by themselves. Men and women
havesinceinvented many tools tohelp them with theirwork.

Instead of pounding with our hands, we now use a
hammer. The hammer lets us pound harder and longer
then we could with our handsalone.

The telescope was invented so that we could see farther into space.
We can now see stars we did not know existed before we had
the telescopetohelpoureyes.

Usingourbrains, we can remember information and solve problems.
But there was a need for a tool that would extend the use of our brains,
so the COMPUTER was invented.

Just as a hammer cannot do work without a person to hold it,

a computer will not work without a person to run it
and tell it what to do. This person is called a PROGRAMMER.

Even the best hammer cannot do all the different things our hands can do.
And even the best computer cannot do everything our brains can do.

A computer cannot feel emotion. It cannot feel happy

or sad, as we can. A computer cannot combine ideas

the way our brain can. It can’t put two ideas together

and take the best parts of each one to make a brand new idea.

But...a computer can do some of the simpler jobs

our brains can do. And it can do some of them even faster

than we can! A computer can remember many more things
than most of us can with just our brains,

especially things like long lists of names or numbers.

This information is kept inside the computer in the MEMORY.
Computer programmers call this information DATA.

A computer can compare data
to see if one thing is bigger than another,
or smaller, or the same. It can also put things in order.

A computer can sort many pieces of data
and put together the things that are alike.

And a computer can look in its memory
to find the data a programmer wants, and print out that data
on a video screen or on a sheet of paper.

This book is about the TRS-80 computer,
made by Radio Shack. These are special directions for this computer.
They will not work on all other kinds of computers.

The TRS-80 is called a MICRO-COMPUTER, because it is so small.
Many businesses and universities have computers, too,

but theirs have to do many more jobs than our TRS-80,

so they have to be much larger.

Some of the biggest computers are so huge, they fill an entire room!

The TRS-80 speaks a special computer language called BASIC.

It is an easy language to learn,

because it uses words we hear every day.

Some bigger computers use languages called FORTRAN or COBOL.
You might hear about other languages

when you find out more about computers.

SECTION 2: FLOWCHARTING

When you want the computer to do a job for you,
you must break down the job into small steps,
so the computer can understand what to do.

One big job may have many small steps,
and sometimes it is hard to

keep track of all the steps.

One way of keeping track is with a flowchart.
A flowchart shows all the steps in a problem,
shows what choices there are,

and in what order the steps must be done.

On page 5 is a flowchart

showing all the little steps in a funny problem.
The directions on this flowchart
are things for you to do.

They are not directions for the computer!

The shapes drawn around
the steps show

what kind of a step it is:

Rectangle

for statements telling
exactly what to do
(you have no choice).

Ov'al o)

for START or END.

Diamond

for YES or NO
questions.

Go to
another
block

L

1

Put v+ in | L |
Moms bed | Brmﬁ i+ home.
Go back
and poy
for 1+,

Is

ﬁi}ﬂ Take i‘l".J

+here a
ood ele phanl
n it

7

No

By Stephanie Webb
Age 8

The arrows on a flowchart show you what to do next. One arrow
shows you what to do if the answer is YES.
The other arrow is for NO.

There must be no ‘dead ends’ in a flowchart.
This means that there must always be an arrow
showing what to do and where to go next.

Find the ‘dead end’ in this little flowchart:

START

Find. a
aLog.

Answer: The dead end is

Once you get to that statement,
there is no arrow showing you where to go next.

When you write your own practice flowcharts,
pick a subject you know something about.

Also, your flowchart will be much more interesting
if you pick a topic which has some choices in it.

You want both questions and statements in your flowchart—
not just a page full of one statement after another.

Here are some suggestions:

1. How to take a bath. 2. How to make your mother scream.

3. How to play kickball. 4. How to buy a birthday present.
5. How to make a peanut butter and jelly sandwich.

When the arrows in a flowchart make you do something
over and over again, this is called a DO-LOOP.

Here is an example: (I have drawn only part of this flowchart).

HOW TO GET A DATE WiTH AMY CARTER

If you follow the directions

’ for this part of the flowchart,
Move to you will keep moving to a new
. neighborhood until you are living
A , different in Amy Carter’s neighborhood.
V\elg\r\bor hood .

live inn yJour
nevgh b:/r hoed

This is called a DO-LOOP.

In a DO-LOOP, you keep coming back to the question
you asked until you finally get the answer you need
so you can go on to the rest of the flowchart.

In this example, in order to “get a date with Amy Carter,”
you had to first move into her neighborhood.

We will learn more about DO-LOOPS in Section 6.
In the next sections, you will see how we use flowcharts
to help us write our own computer programs.

SECTION 3: RUNNING THE MACHINE ITSELF

The TRS-80 machine has four basic parts:

The Keyboard — This looks like a regular typewriter keyboard.
It has all the electronics for the computer inside it.

The TV Screen — The information you type on the keyboard
is printed out on the TV screen, so you can see
what you are doing. This is not a regular TV
like you have at your house. It has no channels
and no sound. You can’t watch TV programs on it.

The Power Pack—A special power supply for the keyboard
is provided by this little black box.

The Tape Recorder — This is for saving your programs on cassette tapes.

10

The first time you use the TRS-80,
have an adult help you set up the machine
and connect all the proper plugs.

It is not hard to set up the computer, once you know how,
but it is important that it is done correctly, or you will ruin it.

IF YOU AREN'T SURE—ASK FOR HELP!!
It could take weeks to get your computer fixed if you break it.

Things to Remember

1. Before you start programming, you must turn on
both the keyboard and the TV. (If this doesn’t work,
you probably forgot to plug them into the wall socket.)

2. Our computer has a Random Access Memory. (RAM for short.)
This means that the computer will hold data in its memory
only as long as the machine is left on, and has electricity
flowing through it. If you turn off or unplug the keyboard,

you will lose your program. (Turning off only the TV won't
matter.)

3. Keep your feet away from the electrical cords.
You will make ‘fuzz’ on the screen, and you will lose your program
if you accidentally kick loose an electrical plug.

4. If you put your cassette tape near the power pack,
the magnetic field set up by the power pack might
erase your tape.

5. Take it easy with the keyboard—no pounding, please! e

6. Turn off both the TV and the keyboard when
you are not using them.

11

12

SECTION 4: GETTING READY TO PROGRAM

When you write a program, you are writing a list

of instructions the computer needs to do a particular job,
such as printing your name on the screen.

These instructions are called program statements,

and you’ll learn more about them in Section 5.

But sometimes you need to tell the machine itself

to do something, such as get rid of an old program

SO you can write a new one,

or clear all the printing off the TV screen.

These are called commands— they are not part of a program.

You type them in and press | ENTER
and the computer does them right away.

(I wrote ENTER |in a box because it has a special key
all its own on the keyboard, like | BREAK].)

Program statements all have line numbers in front of them,
to tell the computer which statement should be done first.
(You will see these line numbers in Section 5.)

Remember that commands do not have a line number
because they are not part of a program.

Here are some of the commands you will need.
Remember to press| ENTER |after each one you use.

CLS

NEW

LIST

RUN

This clears all the printing off the screen,

but it does not take your program out of the memory.
Remember—just because the information

isn’t printed on the TV screen doesn’t mean

it is no longer stored inside the computer!

This erases your last program from the memory
so you can start a new program with a ‘clean’ memory.

This command prints out, in order, whatever program
statements you have typed into the memory so far.

If your program has more lines

than will fit on the TV screen all at once,

push the|4 | key, and the next group

of statements will scroll up so you can see them.

This tells the computer you have finished typing
all the instructions in your program,

and now you want the computer to do the JOb
for which you gave the directions. This is called

executing the program. When the computer is finished

executing the program, it will print READY on the screen.

13

14

BREAK

CONT

CSAVE

If the computer is in the middle
of executing your program and you want it to stop,

push the [BREAK] key.

If you change your mind and want the computer
to continue executing the program after you pushed
BREAK]|, then type in CONT and press[ENTER

This command is used when you want to save

a program you have written on the computer,

S0 you can use it another time

without having to type it all in again.

You save your program on a cassette tape,

using the tape recorder: Follow these directions:

SAVING YOUR PROGRAM ON A CASSETTE

1. Advance your cassette tape to the spot

where you want to record your program. Remember the number

on the Tape Recorder Counter! You will need to pull
the first gray plug on the side of the recorder to do this.

2. Plug the gray plug back in.

3. Press down the and keys until they stay.

4. Type in CSAVE slowly and carefully, then press |[ENTER|.

5. When the computer prints READY on the screen,
turn off the recorder.

6. Your program is now recorded on the cassette.
Make sure the location and title
of your program is written down on the cassette.

NOTE: You must use a good quality cassette tape,
and it must be new. You cannot record one program
over the top of another, or erase

an old music tape and use it for computer programs.

15

16

CLOAD This command lets you load a program on a cassette
back into the memory of the computer,
so you can use it again. Follow the directions:

LOADING A CASSETTE PROGRAM INTO THE COMPUTER

1. Advance your tape to a few numbers before where your program
is stored. You will need to pull the first gray plug
to do this. (Example: if your program is stored at 30,
advance the tape to 28, to be sure you don’t miss

the beginning of your program.

2. Plug in the gray plug again. 3. Push the(PLAY)button.

4. Type in CLOAD, slowly and carefully, then press| ENTER|

5. When your program is loading,
** will appear at the top of the screen,
and the * on the right will blink.

6. When the screen says READY, the program
is in the memory of the computer, ready to be used.

7. Turn off the recorder. 8. Type in LIST and press| ENTER|.

SECTION 5: PRINT AND VARIABLES

Let’s begin by writing a program using the PRINT statement.
Our first statement in any program on the TRS-80 should be:

£ COL=

This clears the screen, to get rid of any ‘garbage’ which might mess up your
program later. Remember—CLS only clears the TV screen—it does not erase

your program from the memory. (CLS is one of the few commands that can
be given a line number and become a program statement.)

Now we'll use a PRINT statement to print out the following
message:
5 (LS
18 FRINMT "HELLO! I @AM THE TRS-8@ COMPUTER!'®
15 FRINT "THIS MUST BE YOUR FIRST FROGRAM. "
28 EMD
...and the last line will be an END statement
to show the computer where the program ends.

17

18

Now—when we type in RUN and press |ENTER|,
this is what the computer will print on the screen:

You try typing it in.

"HELLO! I AWM THE TRZ-58 COMPUTER!"

Remember to press |[ENTER i
each time you finish “THIZ MUST EE ¥OUR FIRST FROGRAM.
typing aline.

RUN has no number in front of it. READY

See if it turns out the same
as the screen I've drawn here.

_

Qmputer prints READY at the end of this program,
even if you didn’t tell it to. This is the computer’s way
of telling you it is finished executing this program,
and is ‘ready’ to do something else.

Whenever you use a statement like PRINT “Hello,” the computer
will print out exactly what you put between the quotation marks.
Even if what you put is silly! Even if it is spelled incorrectly.

Here are some examples for you to try.
Then go ahead and make up some of your own!

E CLs
18 PRIMT "I KIM SPELL EEEL GOODR. Y
1E PRIMT "SIGGLE! GIGGLE!M

28 EML:
FUH
(RUN is not part of the program, but I’m putting
it here so you don’t forget to typeiitin
every time you want to run your program.
Later, | won’t write it down each time.)
ECLE

18 FPRIWMT "My HAME IS JOHH SHITH. "
15 PEIMT "MY HAME IS MAEY JOHES. "
28 EHML

FLIH

E L=
18 FRINT "I AM A FRIEMDLY COMFUTER. ™
15 EMD

FLIH

Before we go on with PRINT statements,
let’s talk about line numbers.

Every statement in a program has a number in front of it.

This tells the computer which statement to do first.

The computer will start with the lowest number

and end with the highest number, no matter how many numbers
you skip in between. Good programmers always count by 5’s or 10’s
when they number their lines, so that if they leave out a line

by mistake, they can put it in later, and there will be room.

For example:

5 CLE

18 FREINT "My MAME IS EOBBIE. "

15 FREINMT "MY BIRTHD&Y IS JULY ZRD.
=8 EMD

20

Now—if I wanted to put a line in my program
telling how old Robbie is, right after line 10,

I could just type in:
12 PRINT "I @M 9 YEARS OLD. "

If I type in CLS to clear the screen, and then type LIST,
the computer will put line 12 into the program,
in the right place, and this is how the program will appear:

5 CLE

18 PRINT "MY MAME IS ROEBBIE. "

12 FRINT "I AM 9@ YEARS OLD.

18 PEIMT "M% BIRTHDAY IS JULY ZRL.
28 EMD

This is very helpful if you forget something in your program.

You can use the same idea to delete (take out)
a line in your program, if you make a mistake

or just decide you don’t want that line anymore.

21

22

LS I
18 PEIMT "TODaY IS TOOsSDay. "
15 EHD

In this program, line 10 has a spelling mistake.
To get rid of line 10 completely, all you do is type in: 1
and hit the return key. This will erase line 10 from the memory.

But suppose you are typing a line and you notice right away

that you've made a mistake, even before you go on to the next line.
Can you erase part of a line? Of course! All you do

is press the|«|key until you see the mistake erased

from the screen, and type in the correct letter.

Remember that the [«]key only works for the line you are

typing on right then - if you are typing on line 15,

you cannot erase something on line 5 with the [«]key.

You will have to type in a whole new line 5.

You may also be wondering why zero

is written with a line through it, like this: =

This is done on all computers so that there is no mix-up
between the number zero and the letter O . You should use
the special zero when you write your programs on paper, too.

When youtypein your own programs on the TRS-80, if you type in something
the computer does not understand, it may print WHAT? or HOW? on the
screen. This means you have made a mistake and you should try again.
These ‘messages’ are called error messages.

The PRINT statement can also be used to skip a line.

5 LS
18 FRINT "HELLD" . HELLO v
15 FRIMT GOOD-EBYE -

2B PRINT "GOOD-EYE"
25 EMD

Without the quotation marks in a PRINT statement,
the TRS-80 will work like a calculator:

5 LS
18 FREIMT 18 + 28
15 EHD

This program will print
out the answer to 10 + 20, which is 30. If you wanted the computer to print out
the actual problem 10 + 20, you write it like this: 1a rrINT "18 + 280

Do you notice the difference?

23

Here is a PRINT program and the results on the TRS-80 screen
when the program is executed. Look it over carefully.

5 CLs

18 FRIMT "“REL" . RED

15 FRINT " EBLUE" | BLLUE
26 PRIMT "YELLOW" YELL O
ZE FRINT "E + &" Ees

I8 PRINT E + & .

IE FRIMT '

48 FREIMT "FIMK FICKLES"

PINK PICKLES

45 END

Notice that line 45 END does not print the word ‘END’
on the screen. It just tells the computer
that this is the end of your program.

The computer can also keep a number in its memory,
and print it out later when you ask for it.
Let’s look at how the memory works.

The memory is like a big Post Office,
with letters of the alphabet on each ‘mailbox’.

You put a number in the ‘mailbox’ by using a LET statement.

Now, whenever you use the statement zz FrIHT "a"

in your program, the computer will print out the number
or value in the mailbox called “A”. Of course,

if you want the computer to print out the value of A,

you must make sure you put a number in mailbox A
earlier in your program, or the computer will say: urit=

5 I:ILE;
A B C D 18 LET &

15 LET E

2@ LET C
5 T 2 0

5 LET D

o

&

25

26

In computer programs, the letter names you give to the ‘mailboxes’
are called variables. If you write a statement like 15 FrRINT & + E

the computer will look in A to see what the value is,

then find the value for B, and add them together

and print out just the answer for you. Here is an example:

MEMORY
E. I:IL.‘E;
_ A B
18 LET & = &
IE LET B = 4
=3 FRIMT & + E 6 4
S5 EMD

If you want to change the number stored in mailbox A,
you can use another LET statement later in your program.
This will erase the old value for A and put in the new value.

NOTE: The TRS-80 uses a few special symbols for arithmetic.

Addition + 3 plus 4 is written as 3 + 4
Subtraction — 5 minus 2 is written as 5—2
Multiplication * 6 times 8 is written as 6 * 8
Division / 6 divided by 2 is written as 6 / 2

SECTION 6: GOTO, INPUT, and RND

PRINT statements alone don’t make very exciting programs,
but this section has three new statements
which make programming more fun!

Let’s look at each one, then write some simple programs.

GOTO tells the computer to go to the line number
listed, and do what it says there.

EOCLEs

18 PEIMT "HELLO" Every time the computer
gets to line 20, the program

28 G070 10 ceonamaw tells it to goto line 10.

S8 EHWD

This program prints “Hello” over and over and over again.
The computer would print . .

HELLL all night long, if you

HELLL forgot to turn
HELL) it off!
HEL LD

27

28

INPUT asks you to type in a number
while the program is running.

T CLE A
This sets up a memory
186 FRINT "TYFE IMW Y0OUR AGE. " space called A, and when
e you type in your age, it will be stored
28 INFUT A in memory space A.
Now we can use that information:
25 FRIMT "4¥OUR AGE IS ¢
I8 PEIMT &

IE

ot o

EHL:

Type in this program on the computer and try it yourself.
You will notice that when the computer reaches

an INPUT statement when it is running a program,

it will stop and print “?” until you

type in an answer.

When you write your own INPUT programs,

you must always be careful to put a statement in front of it,
telling the person who uses your program

what the computer is waiting for them to type in.

RND (which is short for Random) also stores a number
in the memory, but the computer picks the number!

E CLS
/This statement makes
18 LET & = EHD CZ53 the computer pick a
“secret number” between
15 FEIMT X 1 and 25 and stores it
in memory space X.
28 EHND

RND is a very handy statement for game programs.
After we learn about IF-THEN statements

in Section 7, you will be able to write

your own computer game of “Guess my number!”

29

30

SECTION 7: IF-THEN and FOR-NEXT

FOR-NEXT statements are lots of fun,

because you can make the computer do
all kinds of work for you!

This statement says,
“I'm going to do something 5 times.”
5 CLS
18 FOR = 1 7O &

) What it will do is print “Tom”.
28 PEIMT "TOM" <= This statement tells it

what to do each time.
I8 HESRT =

IE EHD == This statement is the “counter.” It counts

how many times the computer has done
its job. When it has done the job

the right number of times,

it will go on to the next line of directions.

This part of the program is called a FOR-NEXT LOOP,
because the computer “loops” through that part of the program
over and over again, until it has done its job

the right number of times.

We can also write a program which has several lines
between the FOR and NEXT statements in the loop:

L [CLs

16 FOR % = 1 TO &

15 FRIMT "MY MAME IS JIM LARSEH. "
FOR-NEXT LOOP 28 FRINT 1 LIKE TO WRITE FROGRAMS. "

25 FRINT "I HAVE MY OWH COMPUTER. "

I6 MEHT X

IE EMD

This program will write all three of the PRINT statements each time, until it
has gone through the loop five times. It will print a total of 15 lines.

You may use any variable you wish

in a FOR-NEXT loop,
but the variable must be the same in both statements,
or the computer will give you an error message:

18 FOR(G)= 1 TO 12
15 FRINMT "HaREY" These two variables

must be the same
28 HE1=-=$T

This program will print “HARRY” 12 times.

31

32

Here are a few sample problems to try.
Now take some time and write your own!

Name Numbers

5 CLS & LCLE

168 FOR 2 = 1 TO 168 18 FOR R = 1 TO 188
15 FRIMT "sUsaM IS GREAT. " 15 PEIMT E

28 HEXT £ 28 MEXT E

@ EHD 25 EMD

I have given these programs names,
to make them easier to remember.

Don’t type in the name as part of the program,
or the computer will give you an error message.

IF-THEN statements provide a “test” for your programs.

5 L=
This statement looks in “mailbox” N EETRT MW §owAiE el WIHEER.
to see what number is stored there in the memory. 18 FRINT "TYFE IM YOUR FRYORITE HUMEER.
If it is 5, then the computer is told to PRINT =@ THFUT M
“You have picked the lucky number!” \ == -
If the number is not 5 (if the number “fails” the test,) - 1o 1 BETHT LR il TP EET
then the computer ignores the rest of the statement <5 IF H "_.EE.,.THEH ,FF';I,TT fOL HAYE FICKED
and goes on to the next line. THE LUCEY HUMEEER!

I8 EMD

Let’s think about how IF-THEN statements work.

Pretend you are “inside” your program,
and you are following all the instructions

in the program, just as the computer would.
You are going down the road, and you come
to a fork, where there are two ways to go.

(this is the IF-THEN statement

Mr. IF has a “test” for you. If you pass the test,
you may go down the fork in the road marked
THEN. If you do not pass the test, you must go
the other way.

An IF-THEN statement is called a branch in your program.
\

33

34

We can also show this with a flowchart:

= CLE

18 FPREINT "TYFE IH YOUR FAVYORITE HUMEER. "
15 IHFUT H

28 IF M = & THEM PRIMT "%0OU FPICKED THE LUCEY HUMEER!'™
3@ END

(START)
!

"Type in

your favorite (END -

humber ” T
' N o

!

h \/ou pI°C|CC¢
the lveky
nwumber '

Store the
number n

mai lbox N.

SECTION 8: GRAPHICS PROGRAMS

Graphics programs let you make pictures on the screen
with dots of light. There are 127 dots across each row
on the screen, and 47 dots down the side.

Each dot has an address, so you can tell
the computer which dot you mean.

1 2345 6789 loll \2

5 = Here is a picture of part of the
SEE = L S (7,1) screen. Each of the black dots
: e has an address made up of

e > (3,3) two numbers.

;

8 T (s9

> To get the first number, you

1" H count how far across the

:’; — (1.1) screen that dot is.

14-

15

b

7 The second number shows

'.: how far down from the top

20 of the screen that dot is.

35

36

To light up a dot at an address, you use SET.

5 CLE

18 SET (¥ 112
15 SET (V.1
28 SET (E.E>
25 SET (3.3
I8 EHD

To turn off the dot of light at a certain address,

you use RESET.
E OL=
18 SET ¢7. 113

15 RESET ¢F.11%
28 EMD

* A special note: When you write your own graphics programs,
try not to make all your dots in the upper left corner

of the screen. When your program is over and READY

comes on the screen, it will erase them.

When you count out the address

This is the first letter in the address:
(5, 25)

Ny

We call the number counted

down from the top of the screen Y.
This is the second letter

(or number) in the address.

We need to know about these variables

used to name points, because often you will want
to write an address in a SET statement

as (X, Y), so you can change X and Y easily.

for a dot, we call the number across the sereen X.

37

38

This may sound confusing, but it’s not, once you try it.
Here’s an example to get you started:

= makes this number one bigger

sE GOTO S

v EHD

Writing a graphics program only with SET statements
that have an address for one single point

can take a very long time, because every single dot
needs a line of its own.

Using (X,Y) as an address makes the job much easier.
Let’s look at a way to draw lines,
using (X,Y) and FOR-NEXT loops.

Vertical Line

5 CLS

) - the values of Y will go from
1@ FOR ¥ = 1 TO 47 == 1 to 47 (down the screen).

15 SET <EH.Y) <&

20 MEXT ¥ N—

25 EMD

this line will be drawn at
50 spaces across the screen.

Horizontal Line

E CLE
o o the values of x will go from
16 FOR & = 1 TO 127 <€ 1 to 127 (across the screen).

15 SET (¥, 240 \
28 HEXT &

=5 EHD

this line will be drawn
at 24 spaces down.

By putting a GOTO statement in your graphics program,
you can make your graphics blink on and off!

Remember the CLS statement we put

at the beginning of every program,

to clear away any “garbage” on the screen?

If you tell the computer to GOTO

the CLS after it prints out your picture,

the screen will go blank, and then it will print
your picture again. This will make your picture
blink on and off!

Try this program and see:

W 5 CLE
4 I
After the computer l 18 FOR X = 1 TO 127
lights up this line across . T
the screen, it goes to CLS I 15 SET ox.ZE2
and starts over. \ .
\\ 28 HEXT

™= oo EOTO S

SECTION 9: SAMPLE PROGRAMS

Rain Worm Race
5 CLS 5 CLS
16 LET X = 1 16 FOR X = 1 TO 127
15 LET ¥ = 1 15 SET (X,24)
280 SET (X,Y) 28 SET (X,25)
25 X = X + 1 25 NEXT X
30 Y =Y + 1 38 END
35 IF Y > 41 THEN 50
40 GOTO 20
5¢ END
Stars Computer Panic
5 CLS 5 CLS
18 LET X = RND (127) 16 PRINT “HELP! THIS COMPUTER IS CRAZY!!!"
15 LET Y = RND (47) 15 GOTO 5
26 SET (X,Y)
25 GOTO 180
3@ END

41

Pine Tree

£ CLS

18 PRINT "
15 FRIMT "
26 FRINT "
25 FPEINT "
28 FRIMT

K"
KN
KA
A

R N L L TN T |
S -“: v o"’u a Ffe

Z5 PRINT "HMHEEHEKMENRS

48 PRINWT
45 FRIMT *
58 PRIWT "
&5 EHML:

42

=

Guess my Number

CL

[ix]

8 LET H = RHD <183
18 PRINT "I HAYE & SECRET HUMBER. "

15

FRINT

FEINT "IT IS BETWEEN 1 &MD 188, »

FRINT "TYFE IH YOUR GUESS. "

IHFUT &

IF H = 5 THEN FRINT "COMGRATULATIONS! YOU WIM!'"
IF H =G THEM EHD

IF H > G THEN PRIMT "GUESS & HIGHER HUMBER. "

IF H < G THEH FPRINT "GUESS A LOWER HNUMEER. "

GOTO 25

SECTION 10: GLOSSARY OF STATEMENTS AND COMMANDS

BREAK — stops the execution of a program.

CLOAD — loads a recorded program from the cassette
tape into the memory.

CLS — clears any writing or graphics off the screen
(does not erase program from memory).

CONT — continues the execution of a program after you
stop it by using BREAK.

CSAVE — saves a program by recording it on a cassette.
END — tells the computer the program is over.

ENTER — this key must be pressed each time you
finish typing in a line.

43

44

FOR—NEXT — a type of do-loop which has the computer perform

some action a certain number of times.
Example: 10 FOR X =1TO1¢¢

15 PRINT “HELLO”
20 NEXT X

GOTO — tells the computer to skip to a certain line
number in the program.

IF—THEN — a type of branch statement which puts a “test”
in the program. If the test is passed,
the computer must follow special directions.

INPUT — types out a question mark when the program
is executed, and waits for an answer to be typed in.
The answer is stored in a certain memory space.

Example: 15 PRINT “TYPE IN YOUR AGE”.
20 INPUT N

LET — assigns a number to a memory space (or variable).
Example: 156 LET R = 10¢

LIST — prints out a list, in order, of the program
statements you have typed into the memory.

NEW — erases the old program from the memory.

PRINT — tells the computer you want it to write
something on the screen.

RUN — starts the execution of the program. This
command is NOT part of the program itself,
and it does not have a line number.

RND — has the computer pick a number at random.
Example: 5X=RND(100) picks a random number X between 1 and

100.

SET — lights up a certain dot on the screen.
Example: 15 SET (110, 35) lights up the dot
at 110 spaces over and 35 spaces down.

RESET — turns off the light at a certain dot on the screen.

Example: 5 RESET (75, 26) turns off the dot of light
at 75 spaces across and 26 spaces down.

45

46

Notes for
Teachers and Parents

I am not, by any stretch of the imagination, a sophisticated
programmer. I took one programming course in college, and have
spent the past four years working with elementary school
children. I've taught microcomputer programming to nearly 300
children, ranging in age from 4 to 12, and have yet to run into any
children who aren’t dying to get their hands on the keyboard.
Computers are a natural—they give immediate feedback, and
allow children to create something all their own. I love teaching
programming. It is one of the most exciting things I've ever done.

Candidates for teaching programming to young children must
have one trait above all others—the ability to interact with the
children on a peer level, and learn along with them. Computer
programming is not just a skill—it is a tool. You learn
programming not as a study in itself, but because of what you can
accomplish with it. In any one computer program, there are many
ways to approach and solve the problem at hand. The thing I say
most often to my students is, “Run it, and see if it works!”

I won't presume to tell you just how to go about teaching your
particular group of children, but I would like to share some of my
successful ideas, and some of my failures. These are the things
which have worked, or not worked, with every group of children
I've taught in the past few years.

One word from someone who's been there: book some computer
time for yourself during each week, before you start teaching the
children. Once they've had a few lessons, they'll insist you stand in
line like everyone else!

GENERAL HINTS

If you have had no previous experience with the TRS-80, before
you do anything else, read through the manual which comes with
the machine. It is especially important to understand the
directions for setting up the machine, and the safety precautions.
To gain an overview of this book, you may wish to read through
the children’s portion before you work through the lessons on
programming in the Radio Shack manual. It will not be necessary
to learn everything in the manual—check the glossary of this book
for the most crucial statements and commands.

This book is designed to accompany the Level I machine,
although 99% of the material also applies to the Level II machine.
For all practical purposes, the book can be used with either
machine.

You will see in the manual that the Level I machine will accept
one-letter abbreviations for the majority of the statements and
commands the children will be learning. I do not teach the
abbreviations until late in the year, for I find it is difficult for the
children to proofread and trace the function of another person’s
program when it is a mass of single letters, instead of words such
as PRINT and GOTO, which are more readily understood.

SETTING UP YOUR “COMPUTER CENTER”: Since program-
mers tend to get excited and vocal, I suggest that you locate your
computer in a semi-secluded area which is near someone in your
school who understands the machine. If the children have any
problems with the computer, they are going to come and find you
anyway, and it’s easier if they don’t have to call you down the hall
from another room.

Secure the electrical cords in a way that keeps them out of the
traffic pattern around the computer. Stepping on the cords may
cause a fire hazard and will create fuzz on the TV screen.

I schedule only two children at the computer during one time
slot. They usually help each other if they encounter difficulties.
More than two children at one time may encourage fighting over
who will do the typing.

Have enough room for several chairs around the keyboard, and
consider where you will place the computer when you teach a
group. Sometimes I have used a kitchen timer to keep the children
moving, and other times I have run the schedule by the clock. It
depends on your group. You will keep your sanity longer if you
enforce the rule: “When your turn is over, it’'s OVER.”

A computer notebook for each child is a must. They should learn
to take notes on how to do things, or they will never become
confident programmers. Discourage them from running to you for
answers they should have in their notes.

You may wonder why I have so few sample programs in this
book. I have found that the more timid programmers will never
pull away from the safety of typing in my programs every time
they are on the machine, unless I provide very few samples, and
force them to think up their own.

It sounds, from the tone of these hints, that I have many
problems with children who program. That isn’t the case at all.
However, a seemingly trivial problem can eat up precious time
when 50 children are waiting to use one computer.

The most important thing you as the teacher must do is to give
the children an overall view of the problem you are trying to
program. They must see that a problem can be broken down into
sections, and each section can be accomplished on the computer in
several different ways. Teaching only what a statement does,
without focusing on why you would want to use it, creates
frustrations for most children.

MY BIGGEST FAILURE OF ALL TIME...I can’t emphasize
this one enough. DON'T EVER LET YOUR CHILDREN PLAY
COMMERCIAL GAME TAPES UNTIL THEY ARE ACCOM-
PLISHED PROGRAMMERS!!! By ‘accomplished,” I mean the end
of the first year for most children.

Let’s face it—playing ‘Breakout’ or ‘Computer Hockey’ is much
more fun, and a lot less work, than learning to program. Especially
for elementary school children. If they discover that they can play
game tapes on the school computer, they will lose all interest in
doing the work involved in learning to program. This is a sad but
true fact, and one I learned the hard way. Even with your
12-year-olds, you will regret the day you ever brought a game tape
into your computer center. Overnight, they will change from being
thrilled about having the chance to try their own programs, to
being disappointed because their favorite game tape has been
retired. Certainly, they’'ll have a chance to play games on the
computer. But the games should be those that they have written
themselves.

GROUP INSTRUCTION: Choose for your computer center a
room which has effective shades on the windows. When I teach a
group, I place the TV facing them, and I sit at an angle to the
keyboard. We talk over what we want to accomplish, and I do the
typing. Unless you have a crackerjack typist in the group, it makes
lessons unbearably slow if the whole class has to wait while
someone hunts and pecks on the keys.

SUGGESTED LESSON QUTLINE—once a week lessons.

Do not go on to the next topic until all the children have had a
chance to try out their last lesson on the computer, or they will
never remember it. A weekly schedule is imperative for assuring
individual children their time at the computer. These lessons
follow the sequence of the book:

SECTION 1
1. What is a computer?

SECTION 2
2. Introduce flowcharting
3. Practice writing flowcharts
4. More practice on flowcharts

SECTION 3
5. Running the machine itself, behavior guidelines, and
scheduling (Save CLOAD and CSAVE for later.)

SECTION 4
6. Beginning programming: CLS, NEW, LIST, RUN with
PRINT examples

SECTION 5
7. PRINT statements with quotation marks; error messages
8. PRINT to skip lines; editing
9. PRINT with arithmetics (+, —, *, /)
10. PRINT variables—simple
11. PRINT variables—such as PRINT A + B
12. CSAVE & CLOAD for saving programs on cassette tapes

SECTION 6
13. GOTO
14. INPUT
15.RND

SECTION 7
16. FOR-NEXT with PRINT and arithmetic statements
17. More work on FOR-NEXT
18. IF-THEN test
19.IF-THEN in more complex programs (draw flowchart of
program function)

SECTION 8
20. Discussion of SET (X,Y) and plotting of coordinates on paper
21. Graphics worksheets
22. Graphics-make their own initials with SET
23. Graphics-vertical and horizontal lines
24. Blinking graphics; more complex programs

SECTION 9
25. Discuss possibilities for designing and carrying out their own
programs

TEACHING SUGGESTIONS FOR EACH SECTION

Section 1: What is a computer?

Comparisons to home computer games are helpful. Most
children think computers are “smart,” and younger children will
think they are “magic.” Don’t overexplain—make arrangements to
get the children at the machine as soon as feasible. None of your
explanations will really make sense until then.

Section 2: Flowcharting
The objective is logical thinking, not perfection. Have fun!
Choose “How To" type topics, which have built-in choices. They
must be about something the children understand.

How to: Make pizza; Build a doghouse;
Give a dog a bath; Lose your allowance;
Make a phone call to Grandma.

477

48

Set a minimum number of do-loops or branches. I usually set a
minimum of three. Use drawing paper. Have the children write the
words first, then draw the boxes around the words. It's easier!

Section 3: Running the machine itself

Be careful to use the words “save” and “load” properly, when
you talk about the cassette player, or the children will be confused
and never learn the difference. Typing practice on school
typewriters or those at home will help the children accomplish
much more during their turn at the computer. Children who
practice on manual typewriters tend to pound on the computer
keys. This will cause typing errors and other keyboard problems.

The cassette player system for saving programs is a headache
for many people, but it is my opinion that they have trouble
because they do one of these things incorrectly:

a. They use poor quality recording tape,
or try to save programs over old recordings.

b. They don’t leave enough space on the tape between programs.

¢. They don’t use the counter properly.

d. They continually fiddle with the volumecontrols.Find the
best settings for your machine, and then tape the volume
controls shut, so no one can change them.

e. They don’t save one program twice on the same tape, to insure
that at least one of them will turn out.

Section 4: Getting ready to program

Written quizzes on the meaning of the commands and
statements accomplish very little. Let the children learn about this
while they type in their own programs. If they don’t know what
they’re doing, their program simply won'’t run.

The statement 5 CLS at the beginning of each program prevents
a great many problems that can arise when many people use the
same computer.

Teach the difference between commands and statements. If they
do not understand this difference, the children will be frustrated
the first few times they work at the computer.

Section 5: PRINT and variables

At the back of the book, you will find samples of PRINT
worksheets. This is one of the few areas in which worksheets are
of real value.

Discourage the children from using the letter ‘O’ as a variable. It
tends to be confusing.

You may delete a line only if you are at the end of the listing of

your program. This means that if you have a long program which
fills the screen several times when you LIST it, you cannot delete a
line until it has scrolled all the way to the end.

I use only variables of one letter with beginning programmers.

Section 6: GOTO, INPUT, RND

Every PRINT line moves the cursor down to the next line. This
problem will come up when you teach FOR-NEXT loops with
several PRINT statements in the middle.

Look up the use of the semi-colon in the TRS-80 manual.
Someone will ask you sooner or later how to make things PRINT
right next to each other on the same line, using several PRINT
statements.

RND is great for visually showing a random distribution when
you teach probability.

Section 7: IF-THEN and FOR-NEXT
Reminder: variables must match on FOR-NEXT loops.

The children will have trouble remembering that the computer
drops down to the next line if the test is not met in an IF-THEN
statement.

Flowcharts may be helpful in tracing the functions of loops and
branches in more complex programs. Don't get overly concerned
with detail when you draw them.

“X is not equal to Y” is written as XX >Y

Section 8: Graphics programs

The “over and down” motion of plotting a graphies point on the
coordinates is similar to drawing a large “7” on the screen.

I have included sample worksheets for practicing coordinates in
the back of this section. This is very helpful, especially for the
younger children.

When the children number the squares of their graph paper,
have them put an ‘X’ in the upper left-hand corner square. This
helps prevent mistakes in numbering.

X|1}12|1314)5
1

Tracing the RAIN program through its memory changes is
helpful for showing how the values of variables change in the
program.

When using variables for the coordinates, I teach the children to
use X for horizontal and Y for vertical, at all times. This simplifies
things, and prepares the children, in a minor way, for Cartesian
Coordinates in mathematics.

Section 9: Sample programs

As stated earlier, with the more timid programmers, I find that
too many examples inhibit experimentation.

All children should have their own cassette for saving their
programs. Buying some gummed labels is a good investment, so
that they will not have trouble trying to locate those programs at a
later time.

Section 10: Glossary
I put line numbers in front of all the statements in the examples,
to distinguish them from commands.

49

50

NAME

18 CLE

28 FRIMNT "BIS"

S8 PRINT

[cn]

48 PREINT "YELLOW"

E8 FRIMT "ELUE"

[}

EFL:

X

=

Simulate these computer runs. Show

your “printout” on the screen.

CL!

)

FEINT

FREINT 38 %

FREINT =
FEIMT =

FREIHT
EHDs

AMSWER"

EHL

NAME

Here is a program and “printout.” Find and fix the mistakes
in the programs so a run will produce what is shown on the screen.

Xy

18 CL!

D

[%
+
[x3

<8 PEIMT 2

I8 FRIMT ZE

]
+
La

35 FREIMT

468 FPREIMT "&8 - 3"
@ PRINT 16 - 1@
ed FREIMT "HELLO"
v END

NAME

Write the program to print out the dots shown below.
Don’t forget the END statement!

| 234567 892101l 1213141516 17 i8 19 20 2| 22 23 24

- 2

VO L0CUdRN —~

NAME

On the graph below, color in each dot which
will light up when you run this program:

| 2345678910l I1213141516 17 18 19 20 21 22 23 24

{

2
I:ZLEQ 3
< L, 13 4
=ET ClE. 120 5
SET ©12, 157 6

-
SET 1.5 8
X . s
SET ¢1.63 o
SET ¢16.180 N

12
SET (26,143 13
s = “ 14
SET (21,140 5
SET (24,187 le

\7
EMD I8

53

Notes

For the child who is eager to enter

the exciting world of computers
and

For the parent or teacher who is

eager to help them learn

Computers for Kids is here!!

The Computers for Kids series is
designed for children ages 8-13
who are interested in computers
but are overwhelmed by the read-
iINg level and quantity of material
covered in adult level manuals.
(Computers for Kids can be consid-
ered a children’s level manual.)

This entertaining, easy to read
book includes sections on:

= How computers work

= How to operate the TRS-80

= Simplified flowcharting

m Step by step discussion of
BASIC

s Statements and how they are
used to write programs

s Color graphics

= A child’s glossary of BASIC
terms

Sally Greenwood Larsen has taught
Kindergarten through Seventh
grade and is a pioneer in teaching
young children to program
microcomputers.

She has also written editions in this
series for the Apple Il Plus, Atari,
Timex-Sinclair, and Commodore
VIC-20 computers.

“"There is a special section for parents and
teachers with teaching ideas, tfrouble-
shooting hints, lesson plans.

55.95

CREATIVE
[= COMPUTING

ISBN 0-916688-20-8

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf

